Đề thi thử tốt nghiệp thpt quốc gia môn Toán năm 2022 – Đề 4

Blog chia sẻ Bộ đề thi thử tốt nghiệp THPT Quốc gia môn Toán năm 2022, giúp bạn ôn luyện và chuẩn bị cho thật tốt cho kì thi THPT sắp tới.

Xem thêm: Đề thi thử tốt nghiệp thpt quốc gia môn Toán năm 2022 – Đề 3

Môn Toán là môn thi thứ 2 diễn ra trong kỳ thi tốt nghiệp THPT Quốc gia. Đây là môn thi bắt buộc và có vai trò rất quan trọng trong việc xét tốt nghiệp và xét tuyển vào các trường Đại học – Cao đẳng. Dưới đây là bộ đề thi thử tốt nghiệp THPT Quốc gia môn Toán năm 2022, giúp các em đạt kết quả cao trong kì thi sắp tới. Cùng Tailieufree cập nhật nhanh chóng nhé!

Câu 1. Cho hàm số Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2). Khẳng định nào sau đây đúng?

 A. Hàm số đồng biến trên khoảng (2;+∞)

 B. Hàm số nghịch biến trên khoảng Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

 C. Hàm số nghịch biến trên khoảng (2;+∞)

 D. Hàm số đồng biến trên khoảng Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 2. Cho lăng trụ tứ giác đều có cạnh bằng a và cạnh bên bằng 2a. Diện tích xung quanh của hình lăng trụ đã cho bằng

 A. 10a2

 B. 9a2

 C. 8a2

 D. 4a2

Câu 3. Thể tích của khối cầu tiếp xúc với tất cả các cạnh của hình lập phương cạnh Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2) bằng

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 4. Đồ thị hàm số Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2) có bao nhiêu tiệm cận?

 A. 3

 B. 1

 C. 2

 D. 4

Câu 5. Cho Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2). Khẳng định nào sau đây đúng?

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 6. Số giao điểm của đồ thị hàm số y = x3 – 4x + 1 và đường thẳng y = x + 1 bằng:

 A. 1

 B. 2

 C. 3

 D. 4

Câu 7. Bất phương trình Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2) có nghiệm là

 A. x > -4

 B. x < -4

 C. x ≥ -4

 D. x ≤ -4

Câu 8. Cho hàm số y = f(x) có đồ thị như hình vẽ. Khẳng định nào sau đây đúng?

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

 A. Hàm số nghịch biến trên khoảng (-1;+∞)

 B. Hàm số đồng biến trên khoảng (1;+∞)

 C. Hàm số đồng biến trên khoảng (-1;+∞)

 D. Hàm số nghịch biến trên khoảng (-1;0)

Câu 9. Tập nghiệm S của bất phương trình Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2) là

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 10. Cho biểu thức Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2). Khẳng định nào sau đây đúng?

 A. A = 4 + 2a

 B. A = 4 – 2a

 C. A = 1 + 2a

 D. A = 1 – 2a

Câu 11. Số giao điểm của đồ thị hàm số Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2) với trục hoành là

 A. 3

 B. 4

 C. 1

 D. 5

Câu 12. Một hình đa diện có ít nhất bao nhiêu đỉnh?

 A. 6

 B. 3

 C. 5

 D. 4

Câu 13. Tính đạo hàm của hàm số y = xe + ex

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 14. Hàm số y = x3 – 3x có giá trị cực đại bằng

 A. 2

 B. –2

 C. 1

 D. –1

Câu 15. Cho hàm số Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2). Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2). Tính tích M.m.

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 16. Diện tích toàn phần của hình trụ có thiết diện qua trục là hình vuông cạnh a bằng

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 17. Cho khối chóp S.ABC có ba cạnh SA, SB, SC cùng độ dài bằng a và vuông góc với nhau từng đôi một. Thể tích của khối chóp S.ABC bằng

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 18. Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên như sau:

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Khẳng định nào sau đây đúng?

 A. Hàm số y = f(x) nghịch biến trên một đoạn có độ dài bằng 1.

 B. Giá trị lớn nhất của hàm số y = f(x) trên R bằng 0.

 C. Hàm số y = f(x) chỉ có một cực trị.

 D. Giá trị nhỏ nhất của hàm số y = f(x) trên R bằng -1.

Câu 19. Thể tích của khối bát diện đều cạnh a bằng

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 20. Trong không gian, cho hai điểm phân biệt A, B cố định. Xét điểm M di động luôn nhìn đoạn AB dưới một góc vuông. Hỏi điểm M thuộc mặt nào trong các mặt sau?

 A. Mặt trụ.

 B. Mặt nón.

 C. Mặt cầu.

 D. Mặt phẳng.

Câu 21. Cho phương trình log5⁡(x2 + x + 1) = 1. Khẳng định nào sau đây đúng?

 A. Phương trình có một nghiệm bằng 0 và một nghiệm âm.

 B. Phương trình vô nghiệm.

 C. Phương trình có hai nghiệm âm.

 D. Phương trình có hai nghiệm trái dấu.

Câu 22. Phương trình Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2) có bao nhiêu nghiệm thực?

 A. 1

 B. 3

 C. 2

 D. Vô số

Câu 23. Hàm số Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2) nghịch biến trên khoảng

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 24. Cho hàm số y = log2x. Xét các phát biểu

(1) Hàm số y = log2x đồng biến trên khoảng (0;+∞) .

(2) Hàm số y = log2x có một điểm cực tiểu.

(3) Đồ thị hàm số y = log2x có tiệm cận.

Số phát biểu đúng là

 A. 0

 B. 1

 C. 3

 D. 2

Câu 25. Cho hàm số y = f(x) có đồ thị như hình vẽ. Hàm số y = f(x) là:

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 26. Các tiệm cận của đồ thị hàm số Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2) là

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 27. Cắt một khối nón bởi mặt phẳng đi qua trục của nó, ta được một tam giác vuông cân có diện tích bằng 8. Khẳng định nào sau đây sai ?

 A. Khối nón có diện tích đáy bằng 8π

 B. Khối nón có diện tích xung quanh bằng Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

 C. Khối nón có độ dài đường sinh bằng 4.

 D. Khối nón có thể tích bằng Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 28. Tổng tất cả các nghiệm của phương trình 4x – 3.2x + 1 + 8 = 0

 A. 1 + log23

 B. 1 – log23

 C. 3

 D. 6

Câu 29. Hàm số nào sau đây có giá trị nhỏ nhất trên đoạn [0;2] bằng –2?

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 30. Khối mười hai mặt đều là khối đa diện đều loại

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

 A. {3;4}

 B. {4;3}

 C. {5;3}

 D. {3;5}

Câu 31. Cho mặt nón có chiều cao h = 6, bán kính đáy r = 3. Hình lập phương ABCD.A’B’C’D’ đặt trong mặt nón sao cho trục của mặt nón đi qua tâm hai đáy của hình lập phương, một đáy của hình lập phương nằm trong cùng một mặt phẳng đáy của hình trụ, các đỉnh của đáy còn lại thuộc các đường sinh của hình nón. Độ dài đường chéo của hình lập phương bằng

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 32. Bạn Nam làm một cái máng thoát nước mưa, mặt cắt là hình thang cân có độ dài hai cạnh bên và cạnh đáy đều bằng 20cm, thành máng nghiêng với mặt đất một góc φ(0° < φ < 90°). Bạn Nam phải nghiêng thành máng một góc trong khoảng nào sau đây để lượng mưa thoát được là nhiều nhất?

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 33. Theo thống kê dân số năm 2017, mật độ dân số của Việt Nam là 308 người/km2 và mức tăng trưởng dân số là năm. Với mức tăng trưởng như vậy, tới năm bao nhiêu mật độ dân số Việt Nam đạt 340 người 1,03%/km2

 A. Năm 2028

 B. Năm 2027

 C. Năm 2026

 D. Năm 2025

Câu 34. Cho các hàm số y = logax, y = logb⁡x và y = cx (với a, b, c là các số dương khác 1) có đồ thị như hình vẽ. Khẳng định nào sau đây đúng?

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

 A. c > b > a

 B. c > a > b

 C. a > b > c

 D. b > a > c

Câu 35. Biết rằng phương trình Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2) có nghiệm khi và chỉ khi m ∈ [a;b], với m là tham số. Giá trị của b – a bằng

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 36. Cho phương trình Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2). Tìm tất cả các giá trị của tham số thực m để phương trình đã cho có 4 nghiệm phân biệt.

 A. m < 2 log23

 B. m > -2 log23 m

 C. m ∈ ∅

 D. 2 log23 < m <2 log23

Câu 37. Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B, AB = BC = 2, AD = 4; mặt bên SAD nằm trong mặt phẳng vuông góc với đáy và có diện tích bằng 6. Thể tích khối S.BCD bằng

 A. 6

 B. 18

 C. 2

 D. 1

Câu 38. Cho tứ diện ABCD có AB = x thay đổi, tất cả các cạnh còn lại có độ dài a. Tính khoảng cách giữa hai đường thẳng AB và CD trong trường hợp thể tích của khối tứ diện ABCD lớn nhất.

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 39. Cho hình chóp tam giác đều S.ABC với Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2). Diện tích của mặt cầu có tâm A và tiếp xúc với mặt phẳng (SBC) bằng

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 40. Đồ thị của hàm số nào sau đây có ba tiệm cận?

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 41. Một khối gỗ hình hộp chữ nhật có chiều dài, chiều rộng và chiều cao lần lượt là 30cm, 20cm và 30cm (như hình vẽ). Một con kiến xuất phát từ điểm A muốn tới điểm B thì quãng đường ngắn nhất nó phải đi là bao nhiêu cm?

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 42. Cho hàm số Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2) có giá trị cực đại y1 và giá trị cực tiểu y2. Giá trị của S = y1 – y2 bằng

 A. S = 8

 B. S = 0

 C. S = -2

 D. S = -8

Câu 43. Cho hàm số y = f(x) và y = g(x) có đồ thị lần lượt như hình vẽ

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Đồ thị hàm số y = f(x).g(x) là đồ thị nào dưới đây?

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 44. Phương trình Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2) có nghiệm trong khoảng nào sau đây?

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 45. Tìm tất cả các giá trị thực của tham số m để hàm số y = x3 – 3x + m có giá trị cực đại và giá trị cực tiểu trái dấu.

 A. m ∈ {-2;2}

 B. m < -2 hoặc m > 2

 C. -2 < m < 2

 D. m ∈ R

Câu 46. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, SA ⊥ (ABCD) và SA = a. Gọi E là trung điểm của cạnh AB. Diện tích mặt cầu ngoại tiếp hình chóp bằng .SBCE

 A. 14πa2

 B. 11πa2

 C. 8πa2

 D. 12πa2

Câu 47. Gọi giá trị nhỏ nhất, giá trị lớn nhất của hàm số y = ln⁡x trên đoạn Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2) lần lượt là m và M. Tích M.m bằng

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 48. Phương trình 3.9x – 7.6x + 2.4x = 0 có hai nghiệm x1, x2. Tổng x1 + x2 bằng

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 49. Phương trình |x|3 – 3x2 – m2 = 0 (với m là tham số thực) có nhiều nhất bao nhiêu nghiệm phân biệt

 A. 4 nghiệm.

 B. 3 nghiệm.

 C. 2 nghiệm.

 D. 6 nghiệm.

Câu 50. Cho hàm số Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2) có đồ thị (C). Có bao nhiêu giá trị thực của tham số m để đường thẳng y = 2x + m cắt đồ thị (C) tại hai điểm phân biệt mà tiếp tuyến của t(C) ại hai điểm đó song song với nhau?

 A. 0

 B. 2

 C. Vô số

 D. 1

Đáp án & Hướng dẫn giải

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 1. Đáp án C

Phương pháp:

* Phương pháp xét sự đồng biến, nghịch biến của các hàm số:

– Bước 1: Tìm tập xác định, tính f'(x)

– Bước 2: Tìm các điểm tại đó f'(x) = 0 hoặc f'(x) không xác định

– Bước 3: Sắp xếp các điểm đó theo thứ tự tăng dần và lập bảng biến thiên

– Bước 4: Kết luận về các khoảng đồng biến, nghịch biến của hàm số.

Cách giải:

Tập xác định: D = R\{2}

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 2. Đáp án C

Phương pháp:

Diện tích xung quanh của hình hộp chữ nhật: Sxq = 2(a + b)h (trong đó, a, b là chiều dài, chiều rộng của đáy, h là chiều cao)

Diện tích xung quanh của lăng trụ tứ giác đều: Sxq = 4ah trong đó, a là độ dài cạnh đáy, h là chiều cao) .

Cách giải:

Diện tích xung quanh của hình lăng trụ đã cho bằng: 4.a.2a = 8a2

Câu 3. Đáp án C

Phương pháp:

Thể tích khối cầu có bán kính R là Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Cách giải:

Bán kính của khối cầu tiếp xúc với tất cả các cạnh của hình lập phương cạnh Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2) chính là nửa độ dài đường chéo các mặt của hình lập phương và bằng:

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 4. Đáp án A

Phương pháp:

* Định nghĩa tiệm cận ngang của đồ thị hàm số y = f(x)

Nếu Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2) là TCN của đồ thị hàm số.

* Định nghĩa tiệm cận đứng của đồ thị hàm số y = f(x)

Nếu Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2) thì x = a là TCĐ của đồ thị hàm số.

Cách giải:

Tập xác định: D = R\{-2;2}

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2) Đồ thị hàm số có 1 tiệm cận ngang là y = 0

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Đồ thị có 2 đường tiệm cận đứng là x = -2 và x = 2.

Câu 5. Đáp án A

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 6. Đáp án C

Phương pháp:

Số giao điểm của hai đồ thị hàm số bằng số nghiệm của phương trình hoành độ giao điểm.

Cách giải:

Phương trình hoành độ giao điểm của đồ thị hàm số y = x3 – 4x + 1 và đường thẳng y = x + 1 là:

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Số giao điểm của hai đồ thị hàm số bằng số nghiệm của phương trình hoành độ giao điểm và bằng 3.

Câu 7. Đáp án C

Phương pháp:

Xét hàm số có dạng y = ax, a > 0, a ≠ 1

+ Nếu 0 < a < 1: hàm số nghịch biến trên (-∞;+∞)

+ Nếu a > 1: hàm số đồng biến trên (-∞;+∞)

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 8. Đáp án B

Cách giải:

Hàm số đồng biến trên khoảng (1;+∞)

Câu 9. Đáp án D

Phương pháp:

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Kết hợp điều kiện xác định, suy ra, bất phương trình có tập nghiệm Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 10. Đáp án B

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 11. Đáp án A

Số giao điểm của hai đồ thị hàm số bằng số nghiệm của phương trình hoành độ giao điểm.

Cách giải:

Phương trình hoành độ giao điểm của đồ thị hàm số với trục hoành là:

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Vậy, đồ thị hàm số Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2) giao với trục hoành tại 3 điểm.

Câu 12. Đáp án D

Cách giải:

Một hình đa diện có ít nhất 4 đỉnh.

Câu 13. Đáp án B

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 14. Đáp án A

Phương pháp:

– Tìm TXĐ

– Tính đạo hàm

– Lập bảng xét dấu y’

– Xác định điểm cực đại và tính giá trị cực đại.

Cách giải:

Tập xác định: D = R

y = x3 – 3x ⇒ y’ = 3x2 – 3

y’= 0 ⇔ x = ±1

Bảng xét dấu y’

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Hàm số đạt cực đại tại x = -1 và giá trị cực đại y = 2

Câu 15. Đáp án C

Phương pháp:

– Tìm TXĐ

– Tính y’

– Lập bảng biến thiên của hàm số trên đoạn Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

– Xác định giá trị lớn nhất và giá trị nhỏ nhất của hàm số

– Tính tích M.m.

Cách giải:

TXĐ: D = R\{1}

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Giá trị nhỏ nhất Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2), giá trị lớn nhất Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 16. Đáp án B

Phương pháp:

Diện tích xung quanh của hình trụ: Sxq = 2πRh

Diện tích toàn phần của hình trụ: Stp = Sxq + S2đáy = 2πRh + 2πR2

Cách giải:

Thiết diện qua trục là hình vuông cạnh a nên hình trụ đã cho có chiều cao h = a, bán kính đáy Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Diện tích toàn phần của hình trụ là:

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 17. Đáp án A

Phương pháp:

Khối chóp S.ABC có ba cạnh SA, SB, SC vuông góc với nhau từng đôi một là một tứ diện vuông tại đỉnh S

Thể tích của tứ diện vuông có độ dài ba cạnh góc vuông bằng a, b, c là: Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Cách giải:

Thể tích của khối chóp S.ABC bằng: Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 18. Đáp án A

Phương pháp:

Dựa vào BBT và đánh giá từng đáp án.

Cách giải:

Hàm số y = f(x) nghịch biến trên đoạn [0;1], đoạn này có độ dài bằng 1 ⇒ Phương án A đúng.

Hàm số không có GTLN, GTNN trên R ⇒ B và D sai.

Hàm số đạt cực trị tại 2 điểm ⇒ C sai

Câu 19. Đáp án D

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Phương pháp:

Khối bát diện đều được ghép bởi hai khối chóp tứ giác bằng nhau, do vậy, ta tính thể tích bát diện bằng cách tính 2 lần thể tích khối chóp tứ giác đều.

Cách giải:

Thể tích của một khối chóp là:

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 20. Đáp án C

Cách giải:

M di động luôn nhìn đoạn AB dưới một góc vuông ⇒ M thuộc mặt cầu có một đường kính là AB.

Câu 21. Đáp án D

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Do a.c = 1.(-4) < 0 nên phương trình trên có 2 nghiệm trái dấu.

Câu 22. Đáp án A

Phương pháp:

Đưa về cùng số mũ.

Cách giải:

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Phương trình đã cho chỉ có 1 nghiệm thực duy nhất.

Câu 23. Đáp án A

Phương pháp:

– Tìm TXĐ

– Tính y’

– Lập bảng xét dấu y’

– Đánh giá khoảng nghịch biến.

Cách giải:

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Bảng xét dấu y’:

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Hàm số Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2) nghịch biến trên khoảng (-∞;0)

Câu 24. Đáp án D

Phương pháp:

Đánh giá từng đáp án.

Cách giải:

(1) Hàm số y = log2x đồng biến trên khoảng (0;+∞): đúng, do 2 > 1

(2) Hàm số y = log2x có một điểm cực tiểu: sai, hàm số y = log2x luôn đồng biến trên (0;+∞)

(3) Đồ thị hàm số y = log2x có tiệm cận: đúng, tiệm cận đó là đường x = 0

Số phát biểu đúng là 2.

Câu 25. Đáp án B

Phương pháp:

Phân biệt dạng đồ thị của các hàm số : bậc nhất trên bậc nhất, bậc ba, bậc bốn trùng phương.

Cách giải:

Quan sát đồ thị hàm số, ta thấy, đồ thị hàm số không thể là đồ thị của hàm bậc nhất trên bậc nhất và bậc bốn trùng phương. Do đó, loại phương án A và D.

Còn lại, phương án B và C là các hàm số bậc ba.

Quan sát đồ thị ta thấy, khi x → +∞ thì y → +∞ nên ta chọn B (a = 1 > 0)

Câu 26. Đáp án D

Phương pháp:

Đồ thị hàm số bậc nhất trên bậc nhất Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2), (a,c ≠ 0, ad – bc ≠ 0) có tiệm cận đứng là Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2), tiệm cận ngang là Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Cách giải:

Các tiệm cận của đồ thị hàm số Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2) là x = 1, y = 2

Câu 27. Đáp án B

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Phương pháp:

Diện tích hình tròn bán kính R: S = πR2

Diện tích xung quanh của khối nón: Sxq = πRl

Thể tích khối nón: Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Cách giải:

Theo đề bài, ta có tam giác SAB vuông cân tại S và SΔSAB = 8

Ta có:

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 28. Đáp án C

Phương pháp:

Đặt 2x = t, (t > 0). Giải phương trình tìm , sau đó tìm và tổng các nghiệm.

Cách giải:

Đặt 2x = t, (t > 0). Phương trình trở thành:

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Tổng hai nghiệm của phương trình đã cho là: 1 + 2 = 3

Câu 29. Đáp án C

Phương pháp:

Sử dụng phương pháp tìm GTNN, GTLN của hàm số.

Cách giải:

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

⇒ Hàm số đồng biến trên Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

⇒ Hàm số đồng biến trên Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

⇒ Hàm số đồng biến trên Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

⇒ Hàm số đồng biến trên Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 30. Đáp án C

Cách giải:

Khối mười hai mặt đều là khối đa diện đều loại {5;3}

Câu 31. Đáp án A

Phương pháp:

Cắt khối hình bởi mặt phẳng đi qua trục

Tính độ dài x cạnh của hình lập phương

Tính độ dài đường chéo của hình lập phương: Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Cách giải:

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Xét mặt cắt qua trục có SH = h = 6, HA = HB = r = 3

Gọi độ dài cạnh của hình vuông là x.

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 32. Đáp án D

Phương pháp:

Tính thể tích của khối lăng trụ đứng, có đáy là hình thang cân mà hai cạnh bên bằng đáy bé và bằng 20cm.

Thể tích lớn nhất khi diện tích của hình thang cân lớn nhất.

Cách giải:

Thể tích nước lớn nhất khi diện tích của hình thang cân lớn nhất

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Gọi độ dài đường cao là h. Khi đó, AE = BF = h,

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Bảng xét dấu:

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 33. Đáp án B

Phương pháp:

Công thức: An = M(1 + r%)n

Với: An là mật độ dân số ở năm thứ n,

M là mật độ dân số ban đầu,

n là thời gian (năm),

r là mức tăng trưởng dân số.

Cách giải:

Ta có:

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

⇒ Ta cần 10 năm để đạt mật độ dân số như vậy

⇒ Đến năm 2027 mật độ dân số nước ta đạt đến con số đó.

Câu 34. Đáp án D

Cách giải:

Ta thấy, hai hàm số y = logax, y = logb⁡x đều đồng biến trên (0;+∞) ⇒ a, b > 1

Lấy x0 > 0 bất kì, ta thấy logax0 > logbx0 ⇒ a < b ⇒ 1 < a < b

Hàm số y = cx nghịch biến trên R ⇒ c < 1 ⇒ c < a < b

Câu 35. Đáp án A

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 36. Đáp án A

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Phương pháp:

Cô lập m, đưa về dạng f(x) = m

Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m

Cách giải:

Điều kiện: x ≠ 2, x ≠ -4

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Số nghiệm của phương trình đã cho bằng số giao điểm của đồ thị hàm số y = |x2 + 2x – 8| và đường thẳng y = 2m

Quan sát đồ thị hàm số bên, ta thấy, để đồ thị hàm số y = |x2 + 2x – 8| cắt đường thẳng y = 2m tại 4 điểm phân biệt thì 0 < 2m < 9 ⇔ m < log29 ⇔ m < 2 log23

Câu 37. Đáp án C

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Phương pháp:

Thể tích khối chóp: Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Cách giải:

Kẻ SH vuông góc AB (H thuộc AB). Do mặt bên SAD nằm trong mặt phẳng vuông góc với đáy ⇒ SH ⊥ (ABCD)

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 38. Đáp án B

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Cách giải:

Gọi M là trung điểm của CD. Kẻ AH vuông góc mặt phẳng (BCD) (H thuộc (BCD)) ⇒ H ∈ BM, AH ⊥ HM

VABCD lớn nhất khi và chỉ khi AH có độ dài lớn nhất, tức là khi H trùng M

Hai tam giác ACD, BCD đều, cạnh a, có đường cao AM, BM bằng Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Tam giác ABM vuông cân tại A, lấy N là trung điểm của AB ⇒ MN ⊥ AB

Mà MN ⊂ (AMB) ⊥ CD ⇒ MN ⊥ CD ⇒ MN là đoạn vuông góc chung của AB và CD

Khoảng cách giữa hai đường thẳng AB và CD là: Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 39. Đáp án B

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Phương pháp:

Mặt cầu tâm A tiếp xúc với (SBC) có bán kính R = d(A;(SBC))

Diện tích mặt cầu: Smc = 4πR2

Cách giải:

Gọi M, N lần lượt là trung điểm của AB, BC; O là giao điểm của AN và CM. Kẻ AH ⊥ SN (H ∈ SN)

Tam giác ABC đều, tâm O Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Tam giác SAO vuông tại O Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Tam giác SBC cân tại N ⇒ SN ⊥ BC ⇒ Tam giác SNC vuông tại N

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Tam giác AHN đồng dạng tam giác SON Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Diện tích mặt cầu: Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 40. Đáp án A

Phương pháp:

Tìm số đường tiệm cận của từng đồ thị hàm số

Cách giải:

Đồ thị hàm số Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2) có 3 đường tiệm cận là x = 0, x = 2, y = 0

Đồ thị hàm số Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2) có 1 đường tiệm cận là x = 1, x = -1

Đồ thị hàm số Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2) có 2 đường tiệm cận là x = 0, y = 0

Đồ thị hàm số Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2) có 2 đường tiệm cận là x = 2, y = 0

Câu 41. Đáp án B

Phương pháp:

Trải tất cả các mặt của hình hộp chữ nhật ra cùng một mặt phẳng.

Cách giải:

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Để đến được B, đầu tiên con kiến phải đi trên một trong các mặt bên và đi đến một trong các cạnh bên: NP, PE, QE, MQ, MF, NF

* Giả sử con kiến đi đến I trên cạnh MF sau đó tới B, khi đó để độ dài quãng đường là ngắn nhất thì A, I, B thẳng hàng:

Độ dài Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

* Giả sử con kiến đi đến I trên cạnh NF sau đó tới B, khi đó để độ dài quãng đường là ngắn nhất thì A, I, B thẳng hàng:

Độ dài Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

* Giả sử con kiến đi đến I trên cạnh PF sau đó tới B, khi đó để độ dài quãng đường là ngắn nhất thì A, I, B thẳng hàng:

Độ dài Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Vậy, quãng đường ngắn nhất con kiến đi là Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 42. Đáp án D

Phương pháp:

Khảo sát, tìm giá trị cực đại và cực tiểu của hàm số. Từ đó tính S.

Cách giải:

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Bảng xét dấu y’:

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Hàm số đạt cực đại tại x = -1, giá trị cực đại y1 = -4, đạt cực tiểu tại x = 1, giá trị cực tiểu y2 = 4

S = y1 – y2 = – 4 – 4 = -8

Câu 43. Đáp án C.

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Cách giải:

Đặt y = f(x).g(x) = h(x). Khi đó:

h(0) = f(0).g(0) = 0.0 = 0

h(1) = f(1).g(1) = 1.(-1) = -1

Do đó, ta chọn phương án C

Câu 44. Đáp án B

Phương pháp:

Sử dụng tính đơn điệu của hàm số.

Cách giải:

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Phương trình đã cho tương đương:

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 45. Đáp án C

Phương pháp:

+) Tính y’, giải phương trình y’ = 0 ⇒ các cực trị của hàm số.

+) Tính các giá trị cực trị của hàm số và yCT.y < 0

Cách giải:

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Giá trị cực đại và giá trị cực tiểu trái dấu ⇒ (-2 + m)(2 + m) < 0 ⇔ -2 < m < 2

Câu 46. Đáp án A

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Phương pháp:

Sử dụng phương pháp tọa độ hóa.

Cách giải:

Gắn hệ trục tọa độ như hình vẽ.

Trong đó, B(2a;0;0), C(2a;2a;0), E(a;0;0), S(0;0;a)

Gọi I(x0;y0;z0) là tâm của mặt cầu ngoại tiếp hình chóp S.BEC. Khi đó, IS2 = IB2 = IC2 = IE2

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 47. Đáp án A

Phương pháp:

– Tìm TXĐ

– Tìm nghiệm và điểm không xác định của y’

– Tính các giá trị tại Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2), tại , tại nghiệm của y’ . Tìm GTLN, GTNN trong các giá trị đó. e

– Tính tích M.m.

Cách giải:

TXĐ: D = (0;+∞)

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 48. Đáp án D

Phương pháp:

Chia cả hai vế cho 4x, đặt Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2). Giải phương trình tìm t, từ đó tìm x và tổng x1 + x2

Cách giải:

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Câu 49. Đáp án B

Phương pháp:

Số nghiệm của phương trình |x3| – 3x2 – m2 = 0 bằng số giao điểm của đồ thị hàm số y = |x|3 – 3x2 và đường thẳng y = m2

Phác họa đồ thị hàm số , từ đó nhận xét số giao điểm trên.

Cách giải:

Số nghiệm của phương trình |x3| – 3x2 – m2 = 0 bằng số giao điểm của đồ thị hàm số y = |x|3 – 3x2 và đường thẳng y = m2

Từ đồ thị hàm số y = x3 – 3x2

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Ta vẽ được đồ thị hàm số y = |x|3 – 3x2 như sau:

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Do m2 ≥ 0,∀m nên đồ thị hàm số y = |x|3 – 3x2 cắt đường thẳng y = m2 tại nhiều nhất 3 điểm.

Câu 50. Đáp án D

Cách giải:

Xét phương trình hoành độ giao điểm của (C) và đường thẳng y = 2x + m:

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Dễ dàng kiểm tra được x = 2 không phải nghiệm của phương trình (*) với mọi m

Để phương trình (*) có 2 nghiệm phân biệt x1, x2 thì Δ > 0 ⇔ (m – 6)2 + 8(2m + 3) > 0 ⇔ m2 + 4m + 60 > 0, luôn đúng

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Tiếp tuyến của (C) tại hai điểm giao song song với nhau

Đề thi Học kì 1 Toán lớp 12 có đáp án (Đề 2)

Vậy, có 1 giá trị thực của tham số m thỏa mãn yêu cầu đề bài.

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *